Nuestro sitio web utiliza cookies para mejorar y personalizar su experiencia y para mostrar anuncios (si los hay). Nuestro sitio web también puede incluir cookies de terceros como Google Adsense, Google Analytics, Youtube. Al usar el sitio web, usted consiente el uso de cookies. Hemos actualizado nuestra Política de Privacidad. Por favor, haga clic en el botón para consultar nuestra Política de Privacidad.

La NASA regresa a la Luna: Preguntas sobre la seguridad de la nave.

El próximo viaje tripulado alrededor de la Luna promete marcar un nuevo hito en la exploración espacial, pero también reabre un debate técnico profundo sobre riesgos, decisiones de ingeniería y la forma en que la NASA gestiona la incertidumbre. Detrás del entusiasmo por Artemis II, persiste una pregunta clave: ¿es suficiente lo que hoy se sabe para garantizar un regreso seguro?

El 6 de febrero, siempre que no surjan nuevos contratiempos, cuatro astronautas emprenderán una misión histórica que los acercará a orbitar la Luna por primera vez en más de cincuenta años. Viajarán en Orión, la cápsula creada por la NASA a lo largo de dos décadas y concebida como pieza central del programa Artemis. Aun así, el vuelo no está exento de controversias. La nave despegará con un elemento esencial —su escudo térmico— que ya presentó un comportamiento inesperado en una misión anterior y que continúa despertando inquietudes entre especialistas pese a los prolongados estudios realizados.

La NASA sostiene que el riesgo está identificado, estudiado y mitigado. Algunos ingenieros y exastronautas, en cambio, consideran que aún existen incógnitas relevantes. El debate no gira en torno a si la misión fallará, sino a cómo se interpreta el riesgo aceptable cuando hay vidas humanas en juego y datos limitados sobre el comportamiento real de un sistema en condiciones extremas.

La función esencial que desempeña el escudo térmico durante una misión lunar

El escudo térmico de Orión constituye uno de los elementos clave de la nave, ya que se encarga de salvaguardar la cápsula y a quienes viajan en ella durante la etapa más crítica del trayecto: la reentrada en la atmósfera terrestre. Al emprender el retorno desde la Luna, Orión puede desplazarse a más de 30 veces la velocidad del sonido, provocando temperaturas externas capaces de superar los 2.700 grados Celsius.

Para enfrentar ese entorno extremo, el escudo está revestido con Avcoat, un material ablativo que ha sido creado para carbonizarse y desgastarse de manera controlada. En principio, este mecanismo dispersa progresivamente el calor y evita que penetre en el interior de la cápsula. La idea no es reciente: variantes de Avcoat ya se aplicaron con éxito durante las misiones Apolo.

El inconveniente apareció después del vuelo de prueba Artemis I, efectuado en 2022 sin tripulación; al revisar la cápsula tras su retorno, los ingenieros advirtieron que amplias secciones del escudo térmico se habían desprendido, generando cavidades profundas en su superficie. Aunque la nave volvió en buen estado y los estudios señalaron que, de haber llevado astronautas, estos habrían permanecido a salvo, el desempeño del material se alejó de lo previsto.

Este hallazgo obligó a la NASA a abrir una investigación extensa para comprender qué ocurrió exactamente durante la reentrada y si ese mismo fenómeno podría repetirse —o agravarse— en una misión tripulada.

Decisiones de diseño que se gestan desde la concepción del programa

Para comprender el debate actual resulta imprescindible remontarse varios años en la historia de Orión. En 2009, cuando la NASA optó por emplear Avcoat como material para el escudo térmico, tomó esa decisión apoyándose en décadas de conocimiento acumulado. No obstante, el modo de aplicar dicho material sí se modificó en comparación con la época de Apolo.

En los diseños iniciales, el escudo térmico se elaboraba mediante una intrincada estructura en forma de panal rellena de Avcoat, un enfoque que garantizaba un rendimiento muy estable, aunque implicaba procesos lentos, costosos y poco viables para una producción masiva. Para agilizar la fabricación, los responsables del programa decidieron adoptar una alternativa que empleaba grandes bloques del mismo material.

Desde el punto de vista industrial, la decisión tenía sentido: los bloques eran más fáciles de fabricar, probar e instalar. Sin embargo, Artemis I fue la primera ocasión en que este nuevo enfoque se probó en condiciones reales de reentrada lunar. Y fue precisamente ahí donde aparecieron las anomalías.

Los análisis posteriores concluyeron que el Avcoat utilizado no era lo suficientemente permeable. Durante la reentrada, los gases generados por el calentamiento quedaron atrapados dentro del material, provocando presión interna y, finalmente, el desprendimiento de fragmentos. El resultado fue un escudo térmico que, aunque cumplió su función básica, lo hizo de una manera que no estaba en los modelos originales.

Para entonces, el escudo térmico de Artemis II ya estaba fabricado e integrado en la cápsula. Reemplazarlo no era una opción realista ni en términos técnicos ni de calendario.

Una estrategia centrada en ajustar la reentrada

Ante la imposibilidad de sustituir el escudo térmico, la NASA decidió adoptar otra estrategia: modificar el perfil de reentrada de la nave. Orión fue concebida para ejecutar una “reentrada con salto”, una maniobra en la que la cápsula penetra por un instante en la atmósfera, asciende nuevamente y después desciende de manera definitiva. Este enfoque permite afinar con exactitud el lugar de amerizaje, aunque también expone al escudo térmico a complejos ciclos de calentamiento.

Para Artemis II, los ingenieros han replanteado esta ruta, disminuyendo tanto la altitud como la fuerza del rebote inicial para evitar las condiciones que originaron el agrietamiento del escudo térmico en Artemis I. De acuerdo con la NASA, este cambio hará que el Avcoat se desgaste de forma más uniforme y con un comportamiento mucho más anticipable.

Los responsables del programa aseguran que esta decisión se basa en un análisis exhaustivo de datos, simulaciones computacionales y pruebas en laboratorio. Desde su perspectiva, el riesgo residual es moderado y aceptable dentro de los estándares de la agencia.

No todos comparten esa confianza.

Voces críticas y un debate que va más allá de esta misión

Algunos exastronautas y especialistas en protección térmica sostienen que modificar la trayectoria de reingreso no resuelve el problema esencial, pues para ellos el comportamiento del Avcoat continúa siendo complicado de anticipar con exactitud, en especial respecto a la manera en que las grietas aparecen y se expanden cuando el material comienza a deteriorarse.

Uno de los temas que más polémica genera es la aplicación de modelos computacionales para calcular el nivel de riesgo, ya que estas herramientas pueden recrear la formación de gases, el proceso de carbonización del material y la aparición inicial de fisuras, aunque no siempre logran prever cómo progresarán esas fracturas en escenarios reales. Para los críticos, esta incapacidad añade un grado de incertidumbre que no debería pasarse por alto en una misión con tripulación.

Incluso entre los especialistas que respaldan el lanzamiento hay un acuerdo común: el escudo térmico de Artemis II probablemente exhibirá daños perceptibles al volver a la Tierra. La diferencia surge al interpretar ese resultado. Para la NASA y ciertos asesores, la estructura de Orión cuenta con márgenes amplios que permiten asumir ese desgaste sin poner en riesgo a la tripulación. Para otros, aceptar tal escenario significa operar demasiado cerca de un punto límite crítico.

Debajo del Avcoat, Orión incorpora una estructura compuesta que en ensayos controlados ha probado soportar por un corto periodo temperaturas extremas; aunque no se concibió como una protección formal, funciona como un nivel extra de defensa. La NASA afirma que no prevé depender de ella, pero admite que aporta mayor solidez al sistema.

Aprendizajes históricos y la manera en que la NASA afronta el riesgo

El debate en torno a Artemis II no surge de manera aislada. Para numerosos veteranos de la agencia, resulta inevitable vincularlo con la historia del programa del transbordador espacial y con las tragedias del Challenger y el Columbia. En ambos sucesos, las investigaciones posteriores destacaron fallos técnicos, pero igualmente expusieron dificultades culturales relacionadas con cómo se valoraba el riesgo y con la presión por alcanzar las metas establecidas.

Algunos críticos ven paralelismos preocupantes: una confianza excesiva en modelos teóricos, la normalización de anomalías y una tendencia a interpretar resultados favorables como validaciones completas de procesos que aún tienen debilidades. Desde esta óptica, incluso un Artemis II exitoso podría reforzar una falsa sensación de seguridad.

Otros dentro y fuera de la NASA rechazan esa comparación. Argumentan que la agencia ha aprendido de sus errores, que hoy existen múltiples capas de revisión independiente y que el debate actual es, en sí mismo, una señal de una cultura más abierta al cuestionamiento técnico.

La realidad suele ubicarse en un punto medio. La NASA admite que su trayectoria no ha sido impecable, aunque sostiene que todo avance relevante en la exploración espacial implica ciertos riesgos.

Entre la confianza técnica y la incertidumbre inevitable

A pocas semanas de su lanzamiento, todo indica que la decisión está tomada: Artemis II despegará con tripulación a bordo. Los responsables del programa han insistido en que la seguridad sigue siendo la prioridad absoluta y que, con los datos actuales, el nivel de riesgo se mantiene dentro de parámetros aceptables. Los astronautas designados para esta misión también han manifestado públicamente su confianza tanto en el vehículo como en el trabajo realizado por los ingenieros.

Sin embargo, incluso quienes apoyan la misión admiten que existen aspectos del comportamiento del escudo térmico que solo podrán confirmarse cuando la cápsula atraviese nuevamente la atmósfera terrestre. Hay variables que no pueden reproducirse por completo en tierra ni modelarse con exactitud absoluta.

Ese es, en esencia, el centro de la discusión: hasta qué punto resulta sensato admitir aquello que no puede conocerse con total certeza. Para algunos, explorar siempre exigirá avanzar aun con datos incompletos. Para otros, el nivel de incertidumbre actual sigue dejando demasiados interrogantes pendientes.

Lo que resulta evidente es que Artemis II no solo representará una operación técnica, sino que también funcionará como un examen de cómo la NASA combina innovación, cautela y presiones institucionales. El desenlace, sea cual sea, repercutirá en la percepción pública, en las decisiones venideras del programa Artemis y en la manera en que la agencia gestiona los riesgos propios de volver a enviar seres humanos más allá de la órbita terrestre baja.

Como han indicado incluso sus simpatizantes, poner en duda estas decisiones no constituye una postura contraria, sino que representa un paso fundamental dentro del propio proceso. La historia de la exploración espacial evidencia que el avance no proviene de una seguridad infalible, sino de la disposición a asimilar lecciones, rectificar y seguir adelante, recordando que en el espacio la física no hace concesiones y la fortuna no siempre está del mismo lado.

By Adriana Sánchez

También te puede gustar